

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

COURSE DESCRIPTION CARD - SYLLABUS

Course name

English [S2Elenerg1>JA]

Course

Field of study Year/Semester

Electrical Power Engineering 1/1

Area of study (specialization) Profile of study

Smart Grids general academic

Level of study Course offered in

second-cycle polish

Form of study Requirements

full-time elective

Number of hours

Lecture Laboratory classes Other (e.g. online)

0 0

Tutorials Projects/seminars

30 0

Number of credit points

2,00

Coordinators Lecturers

mgr Alicja Lamperska mgr Zuzanna Drajerczak

alicja.lamperska@put.poznan.pl zuzanna.drajerczak@put.poznan.pl

mgr Hanna Nowak

hanna.nowak@put.poznan.pl mgr Wiktoria Tyszka-Ulężałka wiktoria.tyszka@put.poznan.pl

mgr Jadwiga Wolak

jadwiga.wolak@put.poznan.pl

Prerequisites

Language competence compatible with level B2 (CEFR); knowledge of selected field-specific (energy) vocabulary; ability to use various sources of information. Readiness to follow group work rules and to work in a team.

Course objective

To develop the student's ability to use academic and field-specific (energy) language effectively in speech and writing, in a number of complex tasks. To develop the student's ability to analyze critically field-specific texts. To encourage build-up of field-specific vocabulary.

Course-related learning outcomes

Knowledge:

the student understands the differences between written and spoken forms of english. the student has acquired field-specific vocabulary related to renewable energy sources and sustainable growth, smart and environmentally-friendly solutions - smart home, passive house, modern cars.

Skills:

the student is able to write an email, an abstract of their diploma thesis, a summary of a scientific article, using an appropriate linguistic and grammatical repertoire. the student is able to give a talk on a field-specific or popular science topic, and discuss general and field-specific issues, analyzing constraints and feasible solutions. the student is able to understand and analyze international, field-specific literature, assess the merit of resource materials, and use incomplete/partially unreliable resources. the student is able to participate in a discussion on a field specific/professional topic, using "ad rem" arguments.

Social competences:

the student is able to communicate effectively in general and field-specific areas, and communicate in english in public.

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Learning outcomes presented above are verified as follows:

Regular assessment of in-class performance and home assignments: individual and/or group presentations, written tasks. One 60 minute-long written quiz featuring a battery of tests. Successful completion of assignments as above and a 60% score on the quiz are required to obtain a pass.

Programme content

Writing emails, abstracts and summaries. Presentations. Topics: modern ways of generating electrical energy. Energy policies in Poland and EU. Smart solutions: smart home, passive house, modern cars. Advances in electrical engineering.

Teaching methods

Classroom activities guided by the communicative approach, using mulimedia

Bibliography

Basic

Internet sources: Science Daily, Science Direct, MIT online courses-learn.edx.course, howstuffworks, Dubis, A./ Firganek, J. 2006. English through Electrical and Energy Engineering. Kraków: Studium Praktycznej Nauki Języków Obcych Politechniki Krakowskiej.

Additional

Brieger, N, and Pohl, A. 2002. Technical English Vocabulary and Grammar. Summertown: Summertown Publishing.

Campbell, S. 2009. English for the Energy Industry. Oxford: Oxford University Press.

Esteras, S. R. and Fabré, E. M. 2007. Professional English in Use for Computers and the Internet. ICT. Cambridge: Cambridge University Press.

Murphy, R. 2012. English Grammar in Use. Cambridge: Cambridge University Press. (all levels) Oshima, A. and Hogue, A. 2006. Writing Academic English. White Plains: Pearson Education, Inc.

Breakdown of average student's workload

	Hours	ECTS
Total workload	55	2,00
Classes requiring direct contact with the teacher	30	1,00
Student's own work (literature studies, preparation for laboratory classes/ tutorials, preparation for tests/exam, project preparation)	25	1,00